Gastrointestinal helminth parasites of Loggerhead turtle *Caretta caretta* Linnaeus 1758 (Testudines, Cheloniidae) in Brazil

MAX RONDON WERNECK¹, CAMILA MARTOS THOMAZINI², EDUARDO SHIGUERU MORI², VERÔNICA THEREZA GONÇALVES², BERENICE MARIA GOMES GALLO¹ & REINALDO JOSÉ DA SILVA²

¹ Fundação Pró-Tamar, Rua Antônio Athanazio da Silva n.º 273, Bairro Itagua, Ubatuba, São Paulo, Brazil 11680-000, Tel +55-12 3832-6202, Fax +55-12- 3832-7014
E-mail: max@tamar.org.br

² Departamento de Parasitologia, Instituto de Biociências, UNESP, Botucatu, São Paulo, Brazil, 18618-000, Tel. +55-14-38116239, Fax +55-14-38153744, e-mail: reinaldo@ibb.unesp.br

Abstract. Twelve juvenile specimens of *Caretta caretta* were examined and results showed five of them (41.7%) were parasitized by helminthes species, as: *Sulcascaris sulcata*, *Kathlania leptura*, *Orchidasma amphiorchis*, *Pyelosomum renicapite*, and *Calycodes anthos*.

Key words: Sea Turtles, nematodes, trematodes.

Studies on the helminth fauna of sea turtles have been conducted in many countries. However, there are few reports on the occurrence of chelonian helminthes in Brazil and *Chelonia mydas* Linnaeus 1758 was the major studied species (Travassos et al. 1969, Vicente et al. 1993).

The aim of the present study is to report the gastrointestinal helminths of twelve specimens of *Caretta caretta* Linnaeus, 1758 donated to the TAMAR-ICMBio Project Marine Sea Turtle Rehabilitation Center (MTRC) during 2003 and 2007. Five *C. caretta* specimens were found dead by pelagic longline fishing commercial fleet workers and were frozen stored until sent to MTRC. The other seven specimens were collected on the North Coast of São Paulo State, Brazil.

The specimens were necropsied and their digestive tracts collected. Samples from the esophagus, stomach, small and large intestine were collected and then analyzed under stereomicroscope. The collected trematodes were fixed with AFA (Alcohol-Formalin-Acetic Acid) solution under cover slip pressure and stained with carmine. The nematodes were fixed with hot (65°C) AFA solution and clarified with lactofenol. The voucher helminthes were deposited at the Helminthological Collection of the Instituto de Biociências (CHIBB) of the Universidade Estadual Paulista, Botucatu, São Paulo State, Brazil. Morphological and morphometrical analyses were performed using the Qwin Lite 3.1 computerized system (Leica, Germany). Prevalence, mean intensity of infection and abundance were calculated according to Bush et al. (1997).

Five (41.7%) *C. caretta* specimens (mean curvature carapace = 71.3 ± 21.5 cm) were parasitized by helminth. Trematodes were found in 4 (80%) animals while nematodes in 3 (60%). Two (40%) hosts presented concomitant infection by trematodes and nematodes.

Three digenetic trematode species, *Orchidasma amphiorchis* (Braun 1899) Looss, 1900, *Pyelosomum renicapite* (Leidy, 1856) Ruiz, 1946 and *Calycodes anthos* (Braun, 1899) Looss, 1901,
and two nematode species, *Sulcascaris sulcata* (Rudolphi, 1819) and *Kathlania leptura* (Rudolphi 1819). Travassos 1918, were identified.

Orchidasma amphiorchis was the most prevalent species, followed by *S. sulcata* and *K. leptura*. The latter presented the highest mean infection intensity. Mean abundance was highest in *O. amphiorchis* (Table I).

Orchidasma amphiorchis has been reported in *C. mydas* in Mexico (Caballero 1962) and Brazil (Travassos et al. 1969). Yamaguti (1971) reported the occurrence of this helminth in *C. mydas*, *Eretmochelys imbricata* Linnaeus 1758, and *C. caretta* in Florida, the Gulf of Mexico; Oaxaca, Japan and Brazil. Infection by *O. amphiorchis* has also been observed in *C. caretta* in Australia (Blair & Limpus 1982), Italy (Manfredi et al. 1998), and the Mediterranean Sea (Badillo 2007).

Mohan (1970) found *P. renicapite* infecting a specimen of *Dermochelys coriacea* Vandelli, 1761 in the Indian Ocean. This parasite was later reported in the same species in Canada (Threlfall 1979), France (AImor et al. 1989), Porto Rico (Dyer et al. 1995), and Italy (Manfredi et al. 1996).

Aznar et al. (1998) reported the occurrence of *C. anthos* parasitizing *C. caretta* in the western Mediterranean, while Manfredi et al. (1998) observed a prevalence of 14.3% for this parasite in the same species in Italy. Its occurrence was also observed in *C. mydas* in Panama (Caballero et al. 1955) and *D. coriacea* in Canada (Threlfall 1979).

The only trematode species reported in *C. caretta* in Brazil is *Rhytidodes gelatinosus* (Rudolphi, 1819) Looss, 1901 (Travassos et al. 1969). The present study is the first report on the occurrence of *O. amphiorchis*, *P. renicapite* and *C. anthos* parasitizing this chelonian species in Brazil and contributes to the knowledge of geographical distribution of trematode parasites of sea turtle.

Sulcascaris sulcata has been extensively reviewed by Sprent (1977), who demonstrated that this nematode species has only been reported in *C. caretta* and *C. mydas* from the Mediterranean Sea and Western Pacific populations. Subsequent studies have demonstrated the occurrence of the parasite in *C. caretta* in Australia (Lester et al. 1980, Berry & Cannon 1981) and Uruguay (Lent & Freitas 1948). In Brazil, however, it has only been observed in *C. mydas* (Freitas & Lent 1946, Vicente et al. 1993).

Kathlania leptura was originally described by Rudolphi (1819) from a specimen of *C. mydas*. Reported hosts and distribution pattern for this nematode are: *C. mydas* in Sri Lanka, Mauritania, and Brazil (Lane 1914, Travassos 1918); *C. caretta* in Sri Lanka, Brazil, Egypt, Western Australia, the Mediterranean and Ossabaw Island, Georgia, U.S.A. (Baylis 1923, Inglis 1957, Sey 1977, Lester et al. 1980, Khalil 1998, Bursey et al. 2006, Badillo 2007); and *Lepidochelys olivacea* Eschscholtz, 1829 in Zanzibar (Brooks & Frazier 1980). However, contradictory data concerning the occurrence of this parasite in *C. caretta* can be found in the literature. While Bursey et al. (2006) cited this chelonian as host for *K. leptura*, a revision on nematode parasites found in reptiles in Brazil (Vicente et al. 1993) reported only *C. mydas* as host for this nematode. The present study confirms the occurrence of *K. leptura* in *C. caretta*, as previously cited by Bursey et al. (2006).

Few studies on the gastrointestinal helminth community of *C. caretta* have been reported and all were conducted with sea turtles from the Mediterranean Sea (Manfredi et al. 1998, Aznar et al. 1998, Badillo 2007). Prevalence (P), mean

Table I. Prevalence, mean abundance and intensity of infection in Loggerhead Turtle, *Caretta caretta* (Testudines, Cheloniidae), from Ubatuba, State of São Paulo, Brazil.

<table>
<thead>
<tr>
<th>Species</th>
<th>Collection number (CHIBB)</th>
<th>Total number of parasites</th>
<th>Number of infected hosts</th>
<th>Prevalence (%)</th>
<th>Mean abundance</th>
<th>Intensity of infection</th>
<th>Infection site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trematoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orchidasma</td>
<td>1383, 1387, 2531, 2598, 2599</td>
<td>650</td>
<td>4</td>
<td>33.3</td>
<td>54.16 ± 35.82</td>
<td>162.5 ± 90.61</td>
<td>SI</td>
</tr>
<tr>
<td>amphiorchis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyelosomum</td>
<td>1384</td>
<td>12</td>
<td>1</td>
<td>8.3</td>
<td>1</td>
<td>12</td>
<td>L1</td>
</tr>
<tr>
<td>renicapite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calycoodes</td>
<td>2530</td>
<td>1</td>
<td>1</td>
<td>8.3</td>
<td>0.08</td>
<td>1</td>
<td>L1</td>
</tr>
<tr>
<td>anthos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nematoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulcascaris</td>
<td>1385, 1386, 2597</td>
<td>33</td>
<td>2</td>
<td>16.6</td>
<td>2.75 ± 1.94</td>
<td>16.5 ± 1.5</td>
<td>ES, SI</td>
</tr>
<tr>
<td>sulcata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kathlania</td>
<td>1388, 2600</td>
<td>457</td>
<td>2</td>
<td>16.6</td>
<td>38.0 ± 33.7</td>
<td>228.5 ± 177.5</td>
<td>L1</td>
</tr>
<tr>
<td>leptura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

abundance (MA) and intensity of infection (II) were highly variable in these studies. The ecological data reported by Aznar et al. (1998) (P=46; MA=5.7; II=9) and Badillo (2007) (P=45.9; MA=9.65; II=20.95) for *C. anthos* were higher than that observed in the present study. A higher ecological data were similarly observed for *S. sulcata* by Manfredi et al. (1998) (P=71.4; MA=17.8). On the other hand, for *O. amphiorchis*, the data found by Manfredi et al. (1998) (P=21.4; MA=3.1), Badillo (2007) (P=2.3; MA=0.02; II=1) was lower than that were here reported. This was also observed for *K. leptura* by Badillo (2007) (P=2.3; MA=0.02; II=1).

These data suggest that the interaction host-parasite is a complex relationship which involves many variables, including environmental, ontogenetic, feeding habit, ethological and geographical factors. Furthermore, the present study was performed with a smaller sample than other studies like the knowledge on marine chelonian helminth fauna and their geographical distribution.

Acknowledgments

Projeto TAMAR is affiliated with ICMBio, co-managed by the Fundação Pró-TAMAR, and officially sponsored by PETROBRAS. We would like to thank the Fundação de Amaro à Pesquisa do Estado de São Paulo - FAPESP (Proc. 07/59504-7) for financial support. The authors wish to express their thanks to Paula Baldassin, Cecília Baptistotte and Ricardo Nouailhetas Simon for critical reading and suggestions to improve the manuscript, and Bruno de Barros Giffoni (TAMAR-ICMBio), ITAFISH fishing enterprise and the crew of the Oceano Brasil boat.

References

Inglis, W. G. 1957. A revision of the nematodes (Manfredi *et al.* 1998, Aznar *et al.* 1998, Badillo 2007). However, this sampling includes all *C. caretta* specimens found dead in the region of Ubatuba between 2003 and 2007 the data presented contribute to the knowledge on marine chelonian helminth fauna and their geographical distribution.
genera Kathlania and Tonaudia. Annals and Magazine of Natural History, 10: 789-800.

